If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+7x-17=0
a = 3; b = 7; c = -17;
Δ = b2-4ac
Δ = 72-4·3·(-17)
Δ = 253
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{253}}{2*3}=\frac{-7-\sqrt{253}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{253}}{2*3}=\frac{-7+\sqrt{253}}{6} $
| 42=25m | | 4y^2+4y=63 | | X-0,3x-2000=0 | | 2/3x+3=1/6x-1/2 | | 3(m+5)-6=3( | | 7x+9=2x+59 | | 3.51n=6+2.127n | | 325=2.97t+251×40 | | 3x+9=-5x-1 | | P=2.97t+251*40 | | 1/3(3x+6)+2x=26 | | -x+19=23 | | 4x/21/3=3x/0.5 | | -x+19=-5x+15 | | 3/7k=2/3 | | (2x÷7)-(5÷6)=5 | | -6x+15=-5x+21 | | 6x-14=4x-20 | | 2x²+4x-576=0 | | 8w+46+3w-40+10=56 | | 180-(5y-4)=79 | | 5x/35=3/7 | | x+5+4x=3(2x-1) | | 7x-18-4x=2x-4x+12 | | 180-{(y+14)+(4y-18)=79 | | 99-(6x-11)=x+5 | | 4=—3x+34 | | .7x-2.8=42 | | x²-x/2=5-x/3-4/3 | | .7x+-2.8=42 | | -1/2(x+35)=-7 | | 12x+3=14-7 |